Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Gerontol Geriatr ; 69: 134-143, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27918964

RESUMO

Ageing is associated with sarcopenia, a progressive decline of skeletal muscle mass, muscle quality and muscle function. Reduced sensitivity of older muscles to respond to anabolic stimuli, i.e. anabolic resistance, is part of the underlying mechanisms. Although, muscle parameters have been studied in mice of various ages/strains; the aim was to study if mice display similar deteriorating processes as human ageing. Therefore, 10,16,21 and 25 months-old C57BL6/6J male mice were studied to measure parameters of sarcopenia and factors contributing to its pathophysiology, with the aim of characterizing sarcopenia in old mice. Muscle mass of the hind limb was lower in 25 as compared to 10 month-old mice. A significant decrease in physical daily activity, muscle grip strength and ex vivo muscle maximal force production was observed in 25 compared to 10 month-old mice. The muscle anabolic response to a single protein meal showed increased muscle protein synthesis in young, but not in old mice, indicative to anabolic resistance. However, by increasing the protein content in meals, anabolic resistance could be overcome, similar as in human elderly. Additionally, aged mice showed higher fasted insulin and hepatic malondialdehyde (MDA) levels (=marker oxidative stress). This study shows clear characteristics of sarcopenia that coincide with anabolic resistance, insulin resistance and oxidative stress in 25 month-old C57/BL6 male mice, similar to human ageing. Furthermore, similar decline in muscle mass, strength and function was observed in this aged-mice-model. These observations offer potential for the future to explore in old mice the effects of interventions targeting sarcopenia.


Assuntos
Envelhecimento/fisiologia , Anaerobiose/fisiologia , Proteínas Alimentares/administração & dosagem , Força Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Estresse Oxidativo , Sarcopenia/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Projetos Piloto , Sarcopenia/dietoterapia , Sarcopenia/fisiopatologia
2.
J Cachexia Sarcopenia Muscle ; 6(3): 253-68, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26401472

RESUMO

BACKGROUND: In rodent models, caloric restriction (CR) with maintenance of adequate micronutrient supply has been reported to increase lifespan and to reduce age-induced muscle loss (sarcopenia) during ageing. In the present study, we further investigated effects of CR on the onset and severity of sarcopenia in ageing male C57BL/6 J mice. The aim of this study was to investigate whether CR induces changes in behaviour of the animals that could contribute to the pronounced health-promoting effects of CR in rodents. In addition, we aimed to investigate in more detail the effects of CR on the onset and severity of sarcopenia. METHODS: The mice received either an ad libitum diet (control) or a diet matching 70 E% of the control diet (C). Daily activity, body composition (dual energy X-ray absorptiometry), grip strength, insulin sensitivity, and general agility and balance were determined at different ages. Mice were killed at 4, 12, 24, and 28 months. Skeletal muscles of the hind limb were dissected, and the muscle extensor digitorum longus muscle was used for force-frequency measurements. The musculus tibialis was used for real-time quantitative PCR analysis. RESULTS: From the age of 12 months, CR animals were nearly half the weight of the control animals, which was mainly related to a lower fat mass. In the control group, the hind limb muscles showed a decline in mass at 24 or 28 months of age, which was not present in the CR group. Moreover, insulin sensitivity (oral glucose tolerance test) was higher in this group and the in vivo and ex vivo grip strength did not differ between the two groups. In the hours before food was provided, CR animals were far more active than control animals, while total daily activity was not increased. Moreover, agility test indicated that CR animals were better climbers and showed more climbing behaviours. CONCLUSIONS: Our study confirms earlier findings that in CR animals less sarcopenia is present. The mice on the CR diet, however, showed specific behavioural changes characterized by higher bursts of activity within a short time frame before consumption of a 70 E% daily meal. We hypothesize that the positive effects of CR on muscle maintenance in rodents are not merely a direct consequence of a lower energy intake but also related to a more active behaviour in a specific time frame. The burst of activity just before immediate start of eating, might lead to a highly effective use of the restricted protein sources available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...